Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications
نویسندگان
چکیده
The velocity slip of a fluid at a wall is one of the most typical phenomena in microscale gas flows. This paper presents a flow analysis considering the velocity slip in a capacitive micro gas flow sensor based on pressure difference measurements along a microchannel. The tangential momentum accommodation coefficient (TMAC) measurements of a particular channel wall in planar microchannels will be presented while the previous micro gas flow studies have been based on the same TMACs on both walls. The sensors consist of a pair of capacitive pressure sensors, inlet/outlet and a microchannel. The main microchannel is 128.0 μm wide, 4.64 μm deep and 5680 μm long, and operated under nearly atmospheric conditions where the outlet Knudsen number is 0.0137. The sensor was fabricated using silicon wet etching, ultrasonic drilling, deep reactive ion etching (DRIE) and anodic bonding. The capacitance change of the sensor and the mass flow rate of nitrogen were measured as the inlet-to-outlet pressure ratio was varied from 1.00 to 1.24. The measured maximum mass flow rate was 3.86 × 10−10 kg s−1 (0.019 sccm) at the highest pressure ratio tested. As the pressure difference increased, both the capacitance of the differential pressure sensor and the flow rate through the main microchannel increased. The laminar friction constant f · Re, an important consideration in sensor design, varied from the incompressible no-slip case and the mass sensitivity and resolution of this sensor were discussed. Using the current slip flow formulae, a microchannel with much smaller mass flow rates can be designed at the same pressure ratios.
منابع مشابه
Effects of Thermal Diffusion and Radiation on Magnetohydrodynamic (MHD) Chemically Reacting Fluid Flow Past a Vertical Plate in a Slip Flow Regime
An analysis has been conceded to study the effects of Soret and thermal radiation effects on the magnetohydrodynamic convective flow of a viscous, incompressible, electrically conducting fluid with heat and mass transfer over a plate with time-dependent suction velocity in a slip flow regime in the presence of first-order chemical reaction. The slip conditions at the boundaries for the governin...
متن کاملAnalysis of squeezing flow of viscous fluid under the influence of slip and magnetic field: comparative studies of different approximate analytical methods
The various industrial and engineering applications of flow of fluid between parallel plates have continued to generate renewed interests. In this work, a comparative study of approximate analytical methods is carried out using differential transformation,homotopy perturbation, Adomian decomposition, variation of parameter and variational iteration methods for the analysis of a steady two-dimen...
متن کاملPULSATILE MOTION OF BLOOD IN A CIRCULAR TUBE OF VARYING CROSS-SECTION WITH SLIP FLOW
Pulsatile motion of blood in a circular tube of varying cross-section has been developed by considering slip flow at the tube wall and the blood to be a non- Newtonian biviscous incompressible fluid. The tube wall is supposed to be permeable and the fluid exchange across the wall is accounted for by prescribing the normal velocity of the fluid at the tube wall. The tangential velocity of the fl...
متن کاملA Numerical Analysis for the Effect of Slip Velocity and Stenosis Shape on Non-Newtonian Flow of Blood (TECHNICAL NOTE)
The aim of this paper is to study the effect of slip velocity and shape of stenosis on non-Newtonian flow of blood through a stenosed arterial segment. Blood is modeled as Bingham-Plastic fluid in a uniform circular tube with a radially non-symmetric stenosis. The problem is investigated by a joint effort of analytical and numerical techniques. The influence of stenosis shape parameter, slip ve...
متن کاملMicromachined Flow Sensors in Biomedical Applications
Application fields of micromachined devices are growing very rapidly due to the continuous improvement of three dimensional technologies of micro-fabrication. In particular, applications of micromachined sensors to monitor gas and liquid flows hold immense potential because of their valuable characteristics (e.g., low energy consumption, relatively good accuracy, the ability to measure very sma...
متن کامل